Universidad Simón Bolívar - Probabilidad para Ingenieros – CO3121 – Segundo Examen (35%) Profesores: Zoraida Martínez, Hugo M. Montesinos y Mayra Rodríguez.

Profesor de su sección:

Nombre: ____Hugo M. Montesinos _____ Carné.: ____Clave/Guía de solución _____

Examen 2 Tipo-A: 35%. Sep-Dic.2013. Duración: 1 hora y 50 minutos

El examen es estrictamente **individual**. Se permite el uso de calculadora. El examen consta de 3 preguntas (3 páginas) que totalizan 35 puntos. Verifique que tiene las 3 páginas. Responda cada pregunta **solamente en la hoja de dicha pregunta**. Puede usar el reverso de la hoja si necesita más espacio.

Pregunta 1. (10 puntos) El costo de producción de cierta máquina que se fabrica por encargo es, para nuestra empresa, 4.5×10^7 Bs. por máquina, cuando se producen menos de 4 unidades. Si se producen de 4 a 7 unidades, inclusive, el costo baja a 4.0×10^7 Bs. por máquina, y cuando se producen 8 unidades o más, el costo por unidad baja a 3.5×10^7 Bs. La demanda de estas máquinas fluctúa según una distribución Poisson(6). Hallar:

- 1. (5 puntos) El precio de venta unitario, para que la ganancia esperada por máquina sea 5 millones de bolívares.
- 2. (5 puntos) Con el precio hallado en 1., ¿Cuál es la probabilidad de que nuestra empresa pierda dinero?

SOLUCIÓN:

Sea X=#de unidades demandadas. X es Poisson(6).

Luego
$$P(X = k) = \frac{6^k e^{-6}}{k!}$$
.
 $P(X < 4) = e^{-6} \left(\frac{6^0}{0!} + \frac{6^1}{1!} + \frac{6^2}{2!} + \frac{6^3}{3!}\right) = 0.151203$
 $P(4 \le X \le 7) = e^{-6} \left(\frac{6^4}{4!} + \frac{6^5}{5!} + \frac{6^6}{6!} + \frac{6^7}{7!}\right) = 0.5927759$
 $P(X > 7) = 1 - 0.151203 - 0.5927759 = 0.2560202$

El costo C por máquina es:

$$C = \begin{cases} 4.5 \ con \ probabilidad \ 0.151203 \\ 4.0 \ con \ probabilidad \ 0.5927759 \\ 3.5 \ con \ probabilidad \ 0.2560202 \end{cases}$$

Por lo tanto el costo esperado por máquina es:

$$E(C) = 4.5 * 0.151203$$

 $+4.0 * 0.5927759$
 $+3.5 * 0.2560202$
 $E(C) = 3.947588$
[todo en 1 × 10⁷ Bs.]

Si P y G son el precio y la ganancia por máquina, respectivamente, entonces:

$$G = P - C$$

(Ganancia=Precio – Costo). Luego, tomando esperanza, y usando que piden que la ganancia esperada sea 5 MM de Bs.:

$$5 \times 10^6 \text{ Bs} = P - 3.947588 \times 10^7 \text{ Bs}$$

 $P = 4.447588 \times 10^7 \text{ Bs}$

Con este precio, la ganancia unitaria es:

$$G = \begin{cases} -0.052412 \ con \ probabilidad \ 0.151203 \\ 0.447588 \ con \ probabilidad \ 0.5927759 \\ 0.947588 \ con \ probabilidad \ 0.2560202 \end{cases}$$

Claramente la probabilidad de que la empresa pierda dinero, con este precio es 0.151203. Es la probabilidad de que la demanda sea menor que 4 unidades.

Nota: Este ejercicio también podía verse considerando la función de costo

$$C = \begin{cases} 0 & con \, prob. \, P(X = 0) \\ 4.5 & con \, prob. \, P(1 \le X \le 3) \\ 4.0 & con \, prob. \, P(4 \le X \le 7) \\ 3.5 & con \, prob. \, P(X > 7) \end{cases}$$

La respuesta es muy parecida puesto que $P(X = 0) = e^{-6}$ es muy baja. Sin embargo, ambos resultados y procedimientos se consideran correctos. El primero, implica costos fijos cuando X=0. El segundo, no.

Universidad Simón Bolívar - Probabilidad para Ingenieros – CO3121 – Segundo Examen (35%) Profesores: Zoraida Martínez, Hugo M. Montesinos y Mayra Rodríguez.

Profesor de su sección:

Nombre: ____Hugo M. Montesinos _____ Carné.: ____Clave/Guía de solución _____

Pregunta 2. (15 puntos) Sea $Z \sim Geo(p)$. (suponga que la geométrica cuenta el número de intentos hasta obtener el primer éxito en una sucesión de experimentos independientes Bernoulli con probabilidad de éxito p).

- 1. (5 puntos) Demuestre que para cualquier entero positivo $a, P(Z > a) = (1 p)^a$
- 2. (5 puntos) Sean X_1, X_2, \dots, X_n variables aleatorias independientes, todas con distribución Geo(p). Considere la función $U = \min(X_1, X_2, \dots, X_n)$. Hallar P(U = k) para todo k.
- 3. (5 puntos) Demuestre la propiedad de pérdida de memoria para U. Es decir, demuestre que para cualesquiera enteros positivos a y b, se cumple que P(U > a + b|U > a) = P(U > b)

SOLUCIÓN:

- 1. Que haya más de a intentos hasta el 1er éxito es lo mismo que no haya éxitos en los primeros a intentos. Es decir, que haya a fracasos en los primeros a intentos. Luego la probabilidad pedida es $(1-p)^a$.
- 2. Se vio en clases que $P(U > a) = (P(Z > a))^n$ Hay quienes tienen en sus fórmulas:

$$F_U(a) = P(U \le a) = 1 - (1 - F_Z(a))^n$$

Todo esto es equivalente. Luego:

$$P(U > a) = ((1-p)^a)^n = ((1-p)^n)^a$$

Por lo tanto $U \sim Geo(1-(1-p)^n)$ y por ende

$$P(U=k) = \begin{cases} (1-p')^{k-1}p' \text{ si } k = 1,2,\dots\\ 0 & en \text{ otro } caso \end{cases}$$

donde
$$p' = 1 - (1 - p)^n$$

3.
$$P(U > a + b | U > a) = \frac{P((U > a + b) \cap (U > a))}{P(U > a)}$$
$$= \frac{P(U > a + b)}{P(U > a)} = \frac{(1 - p)^{n(a + b)}}{(1 - p)^{na}}$$

$$= (1-p)^{nb} = P(U > b)$$

Si hicieron la guía, saben que cualquier geométrica cumple la propiedad. Podían demostrarlo para Z y luego argumentar que U también es geométrica.

Universidad Simón Bolívar - Probabilidad para Ingenieros – CO3121 – Segundo Examen (35%) Profesores: Zoraida Martínez, Hugo M. Montesinos y Mayra Rodríguez.

Profesor de su sección:

Nombre: ____Hugo M. Montesinos _____ Carné.: ____Clave/Guía de solución _____

Pregunta 3. (10 puntos) Un lote de producción consta de 8000 artículos, 16 de los cuales son defectuosos. Un inspector toma uno de los artículos al azar, y si no es defectuoso, lo devuelve al lote. Sea N el número de inspecciones de objetos no defectuosos que se realizan <u>antes</u> de encontrar el primer objeto defectuoso.

- 1. (5 puntos) Calcule $P(15 \le N \le 40)$.
- 2. (5 puntos) El lote completo se rechaza y genera pérdidas si N < 15, ya que en este caso el inspector niega el permiso de venta. Si $15 \le N \le 40$, el lote obtiene los permisos básicos de venta y el precio de cada artículo será 150 Bs. Si N > 40, el lote pasa todas las regulaciones y estándares de calidad, y el producto se vende con el sello Premium, a 200 Bs. por unidad. Si el costo de producir cada artículo es 100 Bs. Calcule la ganancia esperada para el lote.

.....

SOLUCIÓN:

1. Sea X=# de artículos inspeccionados <u>hasta</u> observar el primer defectuoso. Entonces $X\sim Geo(0.002)$ y X=N+1. (p=0.002=16/8000) y (1-p=1-0.002=0.998). Luego:

$$P(15 \le N \le 40) = P(15 \le X - 1 \le 40) =$$

$$= P(16 \le X \le 41) = P(X \le 41) - P(X \le 15)$$

$$= 1 - P(X > 41) - (1 - P(X > 15))$$

$$= P(X > 15) - P(X > 41)$$

$$= 0.998^{15} - 0.998^{41}$$

$$= 4.922\%$$

2. Sea G la ganancia del lote. Entonces

$$G = \begin{cases} -100 * 8000 & si \ N < 15\\ (150 - 100) * 8000 & si \ 15 \le N \le 40\\ (200 - 100) * 8000 & si \ N > 40 \end{cases}$$

[todo en Bs.]

Calculamos las probabilidades de cada caso:

$$P(N > 40) = P(X > 41) = 0.998^{41} = 0.9211963$$

 $P(N < 15) = 1 - 0.9211963 - 0.04922 = 0.0295837$

Entonces

$$G = \begin{cases} -800000 & con \, probabilidad & 2.95837\% \\ 400000 & con \, probabilidad & 4.922007\% \\ 800000 & con \, probabilidad & 92.11963\% \end{cases}$$
 [todo en Bs.]

Y la ganancia esperada, E(G), es (en bolívares): 8000 * [-100 * 2.96% + 50 * 4.92% + 100 * 92.12%]

$$E(G) = 732978.1 Bs.$$

(En los cálculos intermedios se usaron todos los decimales) Claramente lo más probable es que se pueda colocar el sello Premium a todos los productos del lote (92.12%), lo cual hace que la ganancia esperada sea cercana a 800000 bolívares fuertes para el lote completo.

